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Abstract

We propose a novel knowledge distillation framework for
effectively teaching a sensorimotor student agent to drive
from the supervision of a privileged teacher agent. Cur-
rent distillation for sensorimotor agents methods tend to re-
sult in suboptimal learned driving behavior by the student,
which we hypothesize is due to inherent differences between
the input, modeling capacity, and optimization processes of
the two agents. We develop a novel distillation scheme that
can address these limitations and close the gap between the
sensorimotor agent and its privileged teacher. Our key in-
sight is to design a student which learns to align their input
features with the teacher’s privileged Bird’s Eye View (BEV)
space. The student then can benefit from direct supervision
by the teacher over the internal representation learning. To
scaffold the difficult sensorimotor learning task, the student
model is optimized via a student-paced coaching mecha-
nism with various auxiliary supervision. We further propose
a high-capacity imitation learned privileged agent that sur-
passes prior privileged agents in CARLA and ensures the
student learns safe driving behavior. Our proposed sen-
sorimotor agent results in a robust image-based behavior
cloning agent in CARLA, improving over current models
by over 20.6% in driving score without requiring LiDAR,
historical observations, ensemble of models, on-policy data
aggregation or reinforcement learning.

1. Introduction
Learning internal representations for making intricate

driving decisions from images involves a complex optimiza-
tion task [4, 43, 54]. The inherent challenge for end-to-end
training of driving agents lies in the immense complexity of
learning to map high-dimensional visual observations into
general and safe navigational decisions [13, 20, 70]. Even
given millions of training examples [4], today’s agents still
fail to reliably learn an internal representation that can be
used for robust processing of complex visual scenarios (e.g.,
dense urban settings with intricate layouts and dynamic ob-
stacles) in a safe and task-driven manner [13, 20, 70].

To ease the challenging sensorimotor training task, re-
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Figure 1. Effective Knowledge Distillation for Sensorimotor
Agents. Our proposed CaT (Coaching a Teachable student) frame-
work enables highly effective knowledge transfer between a priv-
ileged teacher and a sensorimotor (i.e., image-based) student. An
alignment module learns to transform image-based features to the
teacher’s BEV feature space, where the student can then lever-
age extensive and direct supervision on its learned intermediate
representations. The student model is optimized via a coaching
mechanism with extensive auxiliary supervision in order to fur-
ther scaffold the difficult sensorimotor learning task.

cent approaches decompose the task into stages, e.g., by
first training a high-capacity privileged network with com-
plete knowledge of the world and distilling its knowl-
edge into a less capable vision-based student network [11,
13, 23, 47, 79]. However, due to the inherent differences
between the inputs and architectures of the two agents,
current methods rely on limited supervisory mechanisms
from the teacher, i.e., exclusively through the teacher’s
output [11, 13] or knowledge distillation of a single final
fully-connected layer [71, 79, 81]. Moreover, the privileged
teacher’s demonstration targets may be noisy or difficult for
the student to imitate, given the limited perspective [27]. In
this work, we sought to develop a more effective knowledge
distillation paradigm for training a sensorimotor agent to
drive. Our key insight is to enable more extensive supervi-
sion from the teacher by reducing the gap between internal
modeling and learning capabilities between the two agents.

Our proposed approach for holistic knowledge distilla-
tion is informed by human instruction, which often involves
structured supervision in addition to high-level demonstra-



tions, e.g., providing various hints to scaffold information
in a way that the student can better understand [30]. When
teaching others new and challenging skills, i.e., where a stu-
dent may not be able to replicate the demonstration such as
riding a bicycle or driving a vehicle, teachers may provide
additional supervision regarding the underlying task struc-
ture and their own internal reasoning [64]. Analogously to
our settings, the privileged teaching agent can potentially
provide richer supervision when teaching a limited capacity
sensorimotor student, i.e., through more careful and direct
guidance of the underlying representation learning.

In our work, we introduce CaT, a novel method for teach-
ing a sensorimotor student to drive using supervision from a
privileged teacher. Our key insights are threefold: 1) Effec-
tive Teacher: We propose to incorporate explicit safety-
aware cues into the BEV space that facilitate a surpris-
ingly effective teacher agent design. While prior privileged
agents struggle to learn to drive in complex urban driving
scenes, we demonstrate our learned agent to match expert-
level decision-making. 2) Teachable Student via Align-
ment: An IPM-based transformer alignment module can
facilitate direct distillation of most of the teacher’s features
and better guide the student learning process. 3) Student-
paced Coaching: A coaching mechanism for managing
difficult samples can scaffold knowledge and lead to im-
proved model optimization by better considering the ability
of the student. By holistically tackling the complex knowl-
edge distillation task with extensive teacher and auxiliary
supervision, we are able to train a state-of-the-art image-
based agent in CARLA [21]. Through ablation studies, in-
put design, and interpretable feature analysis, we also pro-
vide critical insights into current limitations in learning ro-
bust and generalized representations for driving agents.

2. Related Work

Knowledge Distillation: We study knowledge distillation
methods originally developed for model compression and
acceleration [12,17,29,31,35,36,52,55,74,75] in the context
of training sensorimotor. While approaches for feature dis-
tillation have been minimally explored in this context, we
are motivated by their success in other domains, including
image classification [2,38,40,42,60], object detection [67],
semantic segmentation [46, 78], and natural language pro-
cessing [3,68,73]. Yet, applying such techniques is not triv-
ial given the drastically differing inputs between the privi-
leged agent and student and the overwhelming sensorimotor
task. Consequently, driving policy distillation methods only
provide supervision either from the teacher’s output [11,13]
or the features of a single fully-connected layer [71,79,81],
which (we hypothesize) does not provide sufficient hints to
guide the student training. In this work, we provide novel
mechanisms to close this gap and enable extensive supervi-
sion through deep feature distillation.

Imitation Learning to Drive: Recent approaches in imita-
tion learning (IL) to drive can be traced to Pomerleau [54].
Recently, more elaborate IL-based approaches for driving
have emerged [9, 10, 25, 45, 50, 76, 77, 80, 83]. Specifically,
decomposing the imitation learning task into two stages,
i.e., by first learning a privileged agent through behavior
cloning [11,13] or reinforcement learning [8,62,71,79] and
then training the sensorimotor agent to mimic the output of
the privileged agent. Our study is motivated by such ap-
proaches, yet we explore the benefits of increased super-
vision by the privileged agent. Moreover, prior privileged
agents produce noisy and sub-optimal demonstration super-
vision in complex urban scenarios (even when optimized
with RL, as demonstrated by our analysis). While most cur-
rent studies employ the RL-based teacher of [79], this can
be problematic and inefficient in safety-critical conditions
in the real-world. In our work, we introduce a novel privi-
leged teacher which can greatly surpass prior agents while
only relying on offline behavior cloning.

Intermediate Representation for Driving: Learning an
effective 3D scene representation is crucial for safe au-
tonomous driving. Researchers may obtain such represen-
tations by lifting the image to 3D using estimated depth
and projecting the frustums into a BEV grid [32, 53]. Al-
ternatively, transformer-based architectures can also enable
mapping a camera image to the BEV space [14, 82], i.e.,
by attending to image-based information when populating
a BEV-sampled grid. Related to our work is the study of
Chen et al. [11], which learns a BEV representation from
RGB image and LiDAR input. A motion planner is then
used to generate future waypoints from the BEV. As this in-
troduces significant challenges, we propose to leverage an
IPM-based alignment module which can better structure to
image-to-BEV projection task.

Curriculum and Self-paced Learning: Approaches for
curriculum learning methods often structure learning from
various difficulty samples [5,24,37,39,44,59,61,63,69,84].
To better consider the challenging sensorimotor task and
limited capacity of the student, we adopt a curriculum (i.e.,
an imitation coach), with progressively more challenging
samples. He et al. [27] also proposes training a coach
across iterations of on-policy data collection [56]. In con-
trast, we implement and demonstrate the benefit of a coach
over training iterations without a data aggregation part. This
can facilitate more efficient model training. The approach is
motivated by self-paced learning [41, 72], where the model
selects easy samples dynamically at each iteration based on
a defined loss. In contrast to such studies, we only smooth
the targets of the hard samples (based on the student), in-
stead of discarding them. We empirically find this to result
in improved coaching, potentially due to improved scaffold-
ing of the difficult samples.



3. Method
Our goal is to decompose the challenging sensorimotor

learning task and ease model optimization through effective
supervision from a teacher agent. We first formulate the
problem of privileged agent distillation in Sec. 3.1. Next,
we address current limitations in privileged agent design
to train a robust imitation learned teacher in Sec. 3.2. We
then propose a transformer-based student architecture to re-
solve image-to-BEV feature alignment (Sec. 3.3). Finally,
we train the sensorimotor student via extensive supervision
and knowledge distillation (Sec. 3.4) via a progressive (i.e.,
coaching) mechanism (Sec. 3.5).

3.1. Formulation

Driving can be formulated as a sequential decision-
making problem over a set of sensory observations X s, a
set of actions (motor commands) Y , and a policy function
fs
θ :X s → Y for mapping observations to actions at each

time step [27,50,56]. We consider the task of learning a sen-
sorimotor student agent via knowledge distillation [13, 23]
from a teacher agent f t

ψ:X t → Y with privileged access to
environmental information, e.g., ground-truth lanes, obsta-
cles, and traffic light states. We parameterize the two agents
as neural networks using weights [θ,ψ] ∈ Rd, and denote
Fs(·;θ) and F t(·;ψ) to be the feature maps for the senso-
rimotor student network and teacher network, respectively.
Given a datasetD comprising sensory and privileged obser-
vations and a loss function L, the student can be optimized
from the teacher using

argmin
θ

E(xs,xt)∼D[L(Fs(xs;θ),F t(xt;ψ))] (1)

where the loss may be defined over a final layer, i.e., to
match the output of the teacher [11,13], or over internal lay-
ers as well, i.e., feature distillation [71, 79, 81]. Given the
challenging end-to-end sensorimotor learning task, the role
of the teacher is to provide effective supervision to the stu-
dent, i.e., informative targets in Eqn. 1. However, as the two
agents operate from drastically differing inputs, the knowl-
edge transfer from the teacher to the student can become
ineffective. Specifically, the task of the student is signifi-
cantly more challenging than that of the teacher, i.e., due
to inherent noise and uncertainty. Indeed, there is currently
a substantial gap between the performance of current sen-
sorimotor learning agents and their teaching agents, even
assuming access to expensive and high-quality 3D observa-
tions such as LiDAR [11, 13, 16] (not used in our work).
The teaching process should also ideally consider any lim-
ited capacity of the student to facilitate effective optimiza-
tion and learning [27]. Moreover, learning an optimal and
robust teacher in itself can be a challenging task [13], even
assuming the simplified learning task such as solved percep-
tion, as we demonstrate in Sec. 4 and addressed in Sec. 3.2.

Problem Setup and Agent Observations: We develop
our CaT framework in the context of the CARLA simula-
tor [21]. Our objective is to train a goal-conditional sen-
sorimotor agent [16, 18] for mapping image and goal ob-
servations to vehicle throttle and steering control [13, 48].
We follow standard conditional imitation learning [11, 16]
and assume access to three (non-overlapping) RGB camera
views I = [I0, I1, I2] ∈ RW×H×3, a categorical naviga-
tional command c ∈ {1, . . . , 6} (i.e., turn left, turn right,
follow, forward, left lane changing and right lane chang-
ing) and an intermediate noisy goal g ∈ R2 sampled from
a GNSS (Global Navigation Satellite System) [11]. We
note that both the command and GNSS observations can
be easily obtained by today’s vehicles, i.e., through gen-
eration of an A∗ plan [26] from a static map and coarse
positioning system. The GNSS goals are sampled every 50-
100 meters and reflect real-world measurement errors [11].
We compute a BEV B ∈ {0, 1}WB×HB×CB by rendering
privileged (i.e., ground-truth) information from the under-
lying simulation, including 3D location and state of lanes,
pedestrians, vehicles, and traffic lights [79]. While prior
work has generally leveraged a standardized BEV repre-
sentation [13, 32, 34, 57, 76], we find its design to be cru-
cial to training an optimal teacher policy as will be dis-
cussed in Sec 3.2. We let xs = (I,g, c) ∈ X s and
xt = (B,g, c) ∈ X t be the student and teacher observa-
tions, respectively. Given these observations at each time
step, the agent learns to predict 10 future 2D waypoints in
top-down vehicle coordinates for the next 2.5 seconds of
driving. These are then given to a lateral and longitudinal
PID controllers [13, 48, 66] to generate the final action.

Given this formulation, we next discuss our teacher agent
design and training process. In particular, we aim to learn a
privileged agent which can not only effectively solve the
goal-oriented navigation task, but also facilitate effective
distillation and coaching of a sensorimotor student policy,
as will be discussed in Sec. 3.4.

3.2. Learning an Effective Teacher

In our formulation, learning a student agent begins with
training an effective privileged agent f t

ψ . However, we
find this itself to be a complex task. Even with com-
plete knowledge of perfect BEV perception, current privi-
leged agents are suboptimal, significantly under-performing
CARLA’s built-in autopilot [13, 79]. In this section, we
uncover the underlying reason for this under-performance
through the BEV design. Informed by this key finding, we
train a highly effective imitation-learned teacher that sur-
passes prior privileged agents and matches expert-level per-
formance in CARLA without requiring extensive data col-
lection [56] or reinforcement learning [79]. Our proposed
privileged agent can then enable effective supervision of the
student in Sec. 3.3.
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Figure 2. Overview of Architecture and Distillation Process of CaT. We first train a high-capacity privileged teacher agent (colored
in red) which takes an augmented BEV representation as input, and produces a set of future waypoints conditioned on command and
short-term goal. Our teachable student agent (colored in blue) maps the image features to the BEV space using an alignment module,
which is trained by distillation of intermediate features (arrows colored in blue) and final output (arrow colored in green). Additionally, we
leverage supervision from auxiliary segmentation (arrow colored in red) and command prediction tasks (arrow colored in purple) interlaced
throughout the network to facilitate the learning of task-relevant features.

Teacher Training via Direct Expert Imitation: In imita-
tion learning, an oracle (i.e., expert driver) f∗:X t → Y
is defined for demonstrating optimal actions y∗. In
CARLA [21], the expert is defined using longitudinal and
lateral PID controllers which are carefully tuned and aug-
mented by a collection of manually specified rules for han-
dling diverse scenarios (e.g., sudden braking) over the un-
derlying simulation state. The designed expert can then
be used to generate trajectories as supervised data for
learning the privileged policy function f t

ψ with behavior
cloning [18, 19, 48]. Our privileged agent is a ResNet-18
model [28], as shown in Fig. 2 (further increasing model-
ing capacity was not found to be beneficial). The ResNet
model is followed by a GRU-based conditional waypoint
predictor [11, 16]. Due to the complexity of our dense ur-
ban navigation task, e.g., with multi-lane roads, intersec-
tions, and merging, we incrementally refine the waypoints
using two GRUs within each conditional branch. The first
GRU regresses the preliminary set of waypoints via sequen-
tial waypoints directly from the embedded features. Subse-
quently, the second GRU takes the predicted waypoints to-
gether with the short-term goal and embedded features, to
produce a refined set of waypoint targets.

Even assuming perfect perception, we find it diffi-
cult to train privileged agents that exhibit robust planning
behavior in complex urban driving scenarios. Specifi-
cally, when using the most challenging CARLA benchmark
(Longest6 [16], also detailed in Sec 4) using the standard
BEV representation of Chen et al. [13] leads to 26% driving
score compared to 72% by the rule-based expert. The rein-

forcement learning agent of Zhang et al. [79] achieves 60%
on this task. We sought to explore the limits of behavior
cloning for this task, as a noisy and sub-optimal teacher can
hinder the training of the student model. In particular, we
hypothesize that the reason for the poor performance lies in
the increased complexity of the BEV state representation in
dense scenarios. In such scenarios, learning to extract task-
relevant details can become more challenging. To address
this issue, we propose to introduce additional channels (akin
to affordances [9,22,58]) that can more easily translate into
safety-critical decision-making, simplify the learning task,
and provide an expert-level teaching agent.

BEV with Safety Hints: Our BEV encodes state informa-
tion into distinct channels, including drivable road regions,
the desired route based on the command and layout, lane
markings, and dynamic obstacles (see Fig. 3). Given the
low performance of prior privileged agents, in particular
around dynamic objects, the agent could benefit from more
explicit safety-driven cues in the BEV. We propose to add
two types of channels of (1) predicted agents’ future and
(2) entity attention. First, we utilize a kinematics bicycle
model [16] in order to efficiently predict future trajectories
of dynamic objects. This enables us to iteratively predict
and represent short-term future position, orientation, and
speed of agents (our supplementary contains additional in-
formation regarding this process). Secondly, we encode an
explicit attention channel for highlighting potential future
infractions, i.e., based on the kinematics bicycle model ap-
plied to the ego-vehicle. While this assumes that the current
vehicle throttle and steering remain unchanged, the entity
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Figure 3. Visualization of Our Proposed BEV with Safety Hints. (a) and (b) visualize the baseline and our proposed BEV by encoding
different channels into colors. Roads are shown in dark grey, Desired Route is shown in light grey, Lane Marks are shown in magenta,
Vehicles are shown in blue with past trajectories shown in decreasing saturation with time into the past, Pedestrians are shown in light blue,
Traffic Lights are shown in red or green according to its state, Agent Forecasts are shown in purple with decreasing saturation with time
into the future, Entity Attention is shown in orange. (c) - (j) shows the different channels separately.

attention channel helps the agent better reason over safety
while correlating states with actions. Surprisingly, the ad-
ditions of the safety hints channels provide a strong teacher
with offline behavior cloning alone, even improving over
the rule-based expert (Table 1, 73% vs. 72%). We note that
many of the remaining failures are due to simulation time-
out in crowded intersections. Our boosted teacher agent will
be critical for effective distillation in Sec. 3.4.

3.3. Learning a Teachable Student

Due to differing inputs and modeling capacities, it can be
difficult to align the image-based student features and out-
put with the BEV-based privileged teacher. We propose to
alleviate misalignment by designing a teachable student net-
work, i.e., a model that matches as much of the teacher ar-
chitecture as possible. Specifically, we propose to improve
teacher-student model alignment by leveraging an internal
image-to-BEV alignment module. As shown in Fig. 2, the
three residual blocks following the alignment module can
consequently facilitate knowledge transfer via direct distil-
lation of most of the teacher’s features in Sec. 3.4.

IPM-based Transformer Alignment Module: Explicitly
mapping images to BEV space for downstream tasks can
be challenging. While this can be achieved via depth esti-
mation and lifting [32,53], we sought to incorporate an effi-
cient and differentiable module which can effectively attend
and reason over various features while mapping from front
view to BEV. A transformer-based architecture [14,65] pro-
vides a natural choice as it can be optimized end-to-end
with respect to the driving task while also carefully aligning
features among spaces with arbitrary dimensionalities. As
shown in Fig. 2, we sample queries Qinit ∈ RLH×LW×LC

using a spatial parameterization of the BEV space and pro-
cess them using a self-attention module [14,65]. The output

of self-attention module Q can be formulated as

Q = softmax
(
QinitK

T
init√

d

)
Vinit (2)

where Kinit, Vinit ∈ RLH×LW×LC provide the key-value
pairs and d is the dimension of the query. Subsequently,
each query point q ∈ Q is mapped to its corresponding
reference point p ∈ R3 (homogeneous coordinates) in the
image features FRGB ∈ RZH×ZW×ZC using an Inverse
Perspective Mapping (IPM)

p = sPkRk(q− tk) (3)
where s is a scale factor, Pk ∈ R3×3, Rk ∈ R3×3,
and tk ∈ R3 are the kth camera intrinsics, rotation and
translation relative to the center of the ego-vehicle, respec-
tively [6]. Note that we employ a different IPM mapping
for each camera view to perform the projection.

To populate the student’s BEV features
FBEV ∈ RHB×WB×CB (i.e., the output of the alignment
module in Fig. 2), we leverage a deformable cross-attention
mechanism based on deformable DETR [85]. This enables
the network to attend to multiple regions around the
reference point in the image features when transforming to
BEV feature space. The reference point p and the learned
deformable offsets can then be used as keys K, with their
corresponding features from the extracted images features
the values V, for a cross-attention module

FBEV = DeformAttn (Q,FRGB ,H) (4)

where H = {Pk,Rk, tk}3k=1 contains the combined multi-
view IPM parameters from Eqn. 3. In addition to the pro-
posed alignment and teachable modules, we also incorpo-
rate prediction modules for auxiliary tasks (i.e., BEV pre-
diction [16]), discussed in Sec. 3.4.

GRU-based Waypoint Predictor: The transformed image-
to-BEV features are inputted to three residual blocks and a
GRU-based conditional branch based on the command [11].



3.4. Student Loss

Even with our carefully designed architecture, the stu-
dent’s image-based learning task remains significantly more
challenging than the teacher’s. Thus, both optimization and
alignment with the teacher can benefit from extensive su-
pervision and gradual student instruction, i.e., to scaffold
supervision and better match the student’s ability. Our dis-
tillation process provides ample beneficial supervision for
the student through three holistic mechanisms. First, we
incorporate deep distillation losses, i.e., both over output
(i.e., waypoint regression task) and feature maps, as shown
in Fig. 2, that can more directly supervise internal layers.
Second, we incorporate additional auxiliary losses that reg-
ularize the optimization process. This includes ground-truth
supervised losses, e.g., defined over segmentation and con-
trol command, and a geometric loss defined over the post-
alignment features that supervises for correct BEV struc-
ture. Finally, we leverage a student-paced coaching mecha-
nism for gradually increasing the difficulty of the waypoint
prediction task throughout the iterations in Sec. 3.5.

Loss Functions: Our optimization objective for guiding the
distillation process is a weighted sum over both distillation
and auxiliary tasks:

LCaT = Lout + Lfeat + Lseg + Lcmd (5)

The various loss terms enable guiding holistic aspects of
student learning.

Output Distillation: We leverage an L1 loss computed
over all of the conditional branches for each instance

Lout =

C∑
c=1

∥fs
θ(x

s, c) − f t
ψ(x

t, c)∥1 (6)

This can be done by sampling from the teacher with differ-
ent commands c (following Chen et al. [13]).

Feature Distillation Loss: Our proposed student archi-
tecture provides BEV-space feature alignment, i.e., for di-
rect internal feature matching between the student and the
teacher (the first term in our loss in Eqn. 7). This is in con-
trast to current methods which distill the output or a final
fully-connected layer [11, 13, 71, 79]. However, while this
can provide rich supervision for the student, the two mod-
els should not match entirely, i.e., due to differences in in-
formation processing for a perception-based planning task.
Moreover, the BEV-based features can be highly sparse and
structured, with slight feature offsets being less meaningful
than obtaining a task and scene-relevant representation. To
flexibly account for the student-based task and effectively
represent structural information in BEV space, our feature
loss is computed as

Lfeat =

3∑
i=1

[
∥Fs

i (x
s)−F t

i (x
t)∥2 +

∥T s
i (Fs

i (x
s))− T t

i (F t
i (x

t))∥2 +

λCD∥Fs
i (x

s)−F t
i (x

t))∥CD

] (7)

where we use Fi to denote layers within the networks (as
shown in Fig. 2, we directly distill three layers), Ti indicates
the features following several convolutional layers (trained
jointly with the student network model), and CD stands for
a Chamfer Distance [51] (we set λCD = 0.1). The final
term is computed over thresholded activations and a spatial
soft-argmax [13] from each feature map.

Task-oriented Auxiliary Tasks: To ensure essential task-
relevant information is preserved throughout the distillation
process, we leverage regularizing supervision in the form
of segmentation and command-based auxiliary tasks inter-
laced throughout the network [16, 49]. Our segmentation
lossLseg is a cross-entropy loss, computed over the ground-
truth BEV and averaged across the segmentation prediction
heads. Our command prediction loss Lcmd is binary cross-
entropy supervised by the ground-truth command c, which
facilitates learning task-relevant features [11, 19].

3.5. Student-paced Coaching

While Sec. 3.4 provides ample supervision on the stu-
dent’s internal representations, the teacher’s targets may
still be difficult to imitate for the student. To better consider
the learning ability of the student, we propose to leverage
a student-paced training mechanism which can gradually
coach the student, i.e., through increasingly difficult sam-
ples. When computing the loss in Eqn. 5, we define a coach,

F t ← λiFs + (1− λi)F t, if LCaT > τi (8)

which interpolates the teaching targets with the student’s
predictions and features. λi is a hyperparameter which is
linearly decreased to 0 over training iteration i. The modi-
fied targets are only computed over the hard samples at each
batch. Within each batch, τi is a threshold defining the low-
est 50% of the scored samples for the loss with respect to
the privileged teacher. While smoothing the targets in this
manner may seem counterintuitive, i.e., compared to tech-
niques which mine hard examples, the coaching mechanism
aims to stabilize training by reducing the difficulty when the
student is unable to perform the optimal action. Eqn. 8 en-
ables adjusting the learning rate in a sample-selective man-
ner (initially supressing difficult samples).

4. Experiments
We use the CARLA simulator (version 0.9.10.1) [21]

for data generation and closed-loop evaluation of the pro-
posed CaT framework. We also use open-loop evaluation



Table 1. Quantitative Evaluation on the Longest6 Benchmark. Comparison of CaT with prior methods in terms of Driving Score
(DS), Route Completion (RC), and Infraction Score (IS). Additional infraction metrics (Pedestrian Collisions (Ped), Vehicle Collisions
(Veh), Layout Collisions (LC), Red Light Violations (Red), Off-road Infraction (OR), Route deviation (Dev), Route Timeouts (TO), Agent
Blocked (Blk)) are shown. FD refers to Feature Distillation, SH refers to Safety Hints. *-re-trained by us using the publicly available code.
Mean and standard deviation are computed over three runs. CaT outperforms the state-of-the-art by a large margin in terms of DS.

Method RGB LiDAR DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ LC ↓ Red ↓ OR ↓ Dev ↓ TO ↓ Blk ↓
LAV [11] ✓ ✓ 48.41±3.40 80.71±0.84 0.60±0.04 0.00 0.50 0.19 0.07 0.20 0.07 0.01 0.29
TransFuser [16] ✓ ✓ 46.20±2.57 83.61±1.16 0.57±0.00 0.29 0.38 0.28 0.04 0.07 0.07 0.00 0.32

WOR [10] ✓ ✗ 17.36±2.95 43.46±2.99 0.54±0.06 0.05 0.64 0.15 0.84 0.15 0.89 0.04 0.45
NEAT [15] ✓ ✗ 24.08±3.30 59.94±0.50 0.49±0.02 0.01 0.71 0.21 0.18 0.18 0.00 0.02 2.83
TCP* [71] ✓ ✗ 42.86±0.63 61.83±4.19 0.71±0.04 0.01 0.42 0.11 0.04 0.08 0.01 0.01 0.75

CaT (w/o Alignment, Coaching, FD) ✓ ✗ 39.48±0.67 60.96±1.65 0.68±0.01 0.03 1.29 0.20 0.08 0.84 0.00 0.02 1.49
CaT (w/o Alignment, Coaching) ✓ ✗ 40.64±0.98 62.45±0.46 0.67±0.01 0.02 1.07 0.33 0.14 0.38 0.00 0.02 1.11
CaT (w/o Coaching, FD, SH) ✓ ✗ 44.10±0.40 65.84±5.55 0.72±0.03 0.01 0.26 0.05 0.11 0.15 0.00 0.00 0.66
CaT (w/o Coaching, SH) ✓ ✗ 49.69±2.28 81.10±0.58 0.64±0.02 0.01 0.78 0.03 0.08 0.20 0.00 0.02 0.51
CaT (w/o Coaching) ✓ ✗ 55.55±1.41 81.97±2.34 0.68±0.01 0.02 0.30 0.05 0.07 0.06 0.00 0.02 0.35
CaT ✓ ✗ 58.36±2.24 78.79±1.50 0.77±0.02 0.01 0.20 0.02 0.05 0.30 0.00 0.04 0.44
Privileged Agents:

RL Expert (Roach) [79] - - 60.14±2.40 85.83±0.60 0.69±0.03 0.06 0.22 0.00 0.01 0.00 0.00 0.04 0.07
Rule-based Expert - - 71.96±2.13 77.46±3.11 0.91±0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.03 0.41

Basic BEV Agent [13] - - 24.08±2.83 73.36±1.08 0.31±0.06 0.01 1.45 2.45 0.09 0.27 0.11 0.01 0.24
+ History and Desired Path - - 52.81±1.79 79.34±3.65 0.71±0.06 0.02 0.30 0.00 0.00 0.00 0.00 0.02 0.53
+ Agent Forecast - - 65.73±0.93 83.50±1.18 0.79±0.02 0.01 0.21 0.00 0.02 0.00 0.00 0.01 0.28
+ Entity Attention - - 73.30±1.07 87.44±0.28 0.83±0.02 0.05 0.11 0.00 0.02 0.00 0.00 0.02 0.12

on nuScenes [7, 33, 77] (ADE, FDE, and collision rate). In
Carla, we leverage the Longest6 Benchmark [16], which
uses the six longest routes of each town (Town01 - Town06)
from the set of 76 routes provided by the official CARLA
leaderboard [1] (a total of 36 routes). We note in addi-
tion to the standard cross weather and time of day gener-
alization evaluation, the long and dense traffic conditions in
Longest6 present the most challenging settings across the
various CARLA-based benchmarks. To evaluate our mod-
els, we follow standard metrics and report Route Comple-
tion (RC, in terms of completed route percentage), Infrac-
tion Score (IS, a penalty factor over infractions), and Driv-
ing Score (DS, computed from the prior two) [1, 11, 16]).

4.1. Comparison with Prior Methods

CARLA Results: As shown in Table 1, using feature dis-
tillation, safety hints-based BEV for the teacher, and the
proposed coaching mechanism, CaT is able to obtain a
58.36% DS. Specifically, we achieve state-of-the-art per-
formance among all prior agents, including LiDAR-based
approaches [11, 16] (by 20.6% in terms of DS, from 48.41
to 58.36, and 28.3% in terms of IS). We also note that
such approaches provide strong baselines, due to various
LiDAR-based safety checks that the agents perform on top
of the trained policy, which we do not employ. Moreover,
CaT outperforms the prior RGB-only state-of-the-art agent
TCP [71] by 36.16% DS. To further validate the generaliza-
tion of CaT, we discuss an additional benchmark split from
TCP [71] and LAV [11] in the supplementary. We also find
that removal of the alignment module degrades DS from
44.10% to 39.48%, and is shown to only slightly benefit
from feature distillation (40.64% DS) indicating the effec-
tiveness of the proposed architecture.

Table 2. Open-Loop Evaluation on nuScenes.
Method ADE (m) ↓ FDE (m) ↓ Coll. (%) ↓
BEV Agent 0.33 0.52 0.49

CaT (w/o Coaching, FD, SH) 0.48 0.43 0.68
CaT 0.41 0.36 0.27

Real-World Evaluation: To further analyse the benefits
of CaT in realistic driving settings, Table 2 shows open-
loop evaluation (ADE, FDE, and Collision rate [77]) for
nuScenes [7]. On the official validation split, the privileged
agent performs best with an ADE of 0.33. CaT achieves
0.41 ADE, improving by 14.6% gain over an agent without
distillation and coaching. Moreover, we find a significant
reduction in the collision rate by 60.3% compared to the
baseline. Additional details regarding nuScenes evaluation
can be found in the supplementary.

4.2. Ablation Studies

Teacher Comparison: Table 1 depicts our teacher model
ablation. Specifically, we find the proposed BEV channels
to drastically improve the privileged agent’s performance
by simplifying the learning task (73.30% DS, surpassing
the built-in rule-based expert of 71.96%). We note that
our behavior cloning agent also significantly outperforms an
RL-based expert [79] (60.14%), simply through an effective
BEV design. Thus, our findings apply to real-world scenar-
ios where interactive agent training may be unsafe. We also
observe that the improved teacher benefits the student agent.
Specifically, incorporating the proposed BEV-based safety
hints results in student performance gains, from 49.69% to
55.55%.

Impact of Feature Distillation: Table 3 presents the bene-
fits of our proposed multi-layer feature distillation frame-
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Figure 4. Visualization of Model Input and Features. We show the BEV ground truth (BEV) and RGB image ground truth (Image) on
the top row. Next, we visualize the intermediate layer activations of a sensorimotor agent without the proposed alignment module [71] (No
Alignment Module), privileged teacher agent (Privileged), student agent trained with output distillation only (Output Distillation), and the
proposed agent (CaT). We demonstrate that our teacher agent with proposed knowledge distillation is able to guide the student agent in
learning scene-relevant representations and attend to safety-critical entities (circled in red).

Table 3. Ablation Study on Feature Distillation Layers. All loss
terms in Eqn. 7 benefit training with deep feature distillation.

Method DS ↑ RC ↑ IS ↑
No Distillation 44.10 65.84 0.72

One Layer [71, 79] 45.23 69.33 0.68

Three Layers L2 49.31 66.92 0.78
Three Layers L2 + LCD 51.95 62.82 0.87
Three Layers Lfeat 55.55 81.97 0.68

work. We note that prior methods only distill one final
fully connected layer (before the prediction head [71, 79],
referred to as ‘one layer’ in Table 3). We note that such
approaches result in minimal gains, whereas CaT is able
to benefit from the extensive feature distillation (improving
from 45.23% to 55.55%). Incorporating multiple types of
feature distillation losses also benefits performance.

4.3. Feature Visualization

Fig. 4 depicts the learned features of the initial feature
distilled layer (out of the three in Fig. 2). We visualize acti-
vations from two channels, to better understand the learned
representation by the agents. Interestingly, the visualization
shows how traditionally trained sensorimotor agents (i.e.,
without the proposed alignment module) mostly operate in
image-space features in this layer despite the BEV waypoint
prediction task. This validates our main hypothesis, that
such agents have limited ability to learn from a BEV-based
agent, even with BEV-based auxiliary prediction tasks. We

also find that output distillation provides a weak supervi-
sion for critical components of the BEV, including layout
and object features. After feature distillation, the features
of our CaT model are able to not only keep the driving-
related semantic information i.e., drivable road and route,
but also focus on safety-critical entities. More visualization
examples are provided in the supplementary.

5. Conclusion

We present CaT, a novel knowledge distillation method
for effectively training a sensorimotor student agent us-
ing the supervision from a privileged agent. We lever-
age an alignment module to better map image features to
the BEV space, thus enabling extensive supervision from a
BEV-based teacher over the intermediate feature learning.
As both agents can be trained offline via imitation learn-
ing, our findings are directly relevant to real-world settings
where on-policy interactions may be unsafe to perform. Fi-
nally, we carefully account for inherent differences between
the student and the teacher using a student-paced coach-
ing mechanism with various auxiliary supervision tasks.
Through the improved knowledge distillation process, our
experiments result in a state-of-the-art camera-based agent
in CARLA. Our ablation into input and model design guides
future directions through interpretable analysis into current
limitations of end-to-end driving models.

Acknowledgments: We thank the Red Hat Collaboratory
for supporting this research.
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[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In ICML, 2009. 2

[6] Massimo Bertozzi, Alberto Broggi, and Alessandra Fascioli.
An extension to the inverse perspective mapping to handle
non-flat roads. In IV, 1998. 5

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 7

[8] Raphael Chekroun, Marin Toromanoff, Sascha Hornauer,
and Fabien Moutarde. Gri: General reinforced imitation and
its application to vision-based autonomous driving. arXiv
preprint arXiv:2111.08575, 2021. 2

[9] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong
Xiao. DeepDriving: Learning affordance for direct percep-
tion in autonomous driving. In ICCV, 2015. 2, 4

[10] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learn-
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Krähenbühl. Learning by cheating. In CoRL, 2020. 1, 2,
3, 4, 6, 7

[14] Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu,
Xiangwei Geng, Hongyang Li, Conghui He, Jianping Shi,
Yu Qiao, et al. Persformer: 3d lane detection via perspec-
tive transformer and the openlane benchmark. arXiv preprint
arXiv:2203.11089, 2022. 2, 5

[15] Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat:
Neural attention fields for end-to-end autonomous driving.
In ICCV, 2021. 7

[16] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu,
Katrin Renz, and Andreas Geiger. Transfuser: Imitation
with transformer-based sensor fusion for autonomous driv-
ing. arXiv preprint arXiv:2205.15997, 2022. 3, 4, 5, 6, 7

[17] Inseop Chung, SeongUk Park, Jangho Kim, and Nojun
Kwak. Feature-map-level online adversarial knowledge dis-
tillation. In ICML, 2020. 2

[18] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen
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